
Design, Verification and Applications
of a New Read-Write Lock Algorithm

Jun Shirako
Rice University

6100 Main Street
Houston, Texas 77005
shirako@rice.edu

Nick Vrvilo
Rice University

6100 Main Street
Houston, Texas 77005

nick.vrvilo@rice.edu

Eric G. Mercer
Brigham Young University

3334 TMCB
Provo, Utah 84602

eric.mercer@byu.edu

Vivek Sarkar
Rice University

6100 Main Street
Houston, Texas 77005
vsarkar@rice.edu

ABSTRACT
Coordination and synchronization of parallel tasks is a major source
of complexity in parallel programming. These constructs take many
forms in practice including directed barrier and point-to-point syn-
chronizations, termination detection of child tasks, and mutual ex-
clusion in accesses to shared resources. A read-write lock is a
synchronization primitive that supports mutual exclusion in cases
when multiple reader threads are permitted to enter a critical sec-
tion concurrently (read-lock), but only a single writer thread is per-
mitted in the critical section (write-lock). Although support for
reader threads increases ideal parallelism, the read-lock functional-
ity typically requires additional mechanisms, including expensive
atomic operations, to handle multiple readers. It is not uncom-
mon to encounter cases in practice where the overhead to support
read-lock operations overshadows the benefits of concurrent read
accesses, especially for small critical sections.

In this paper, we introduce a new read-write lock algorithm that
reduces this overhead compared to past work. The correctness of
the algorithm, including deadlock freedom, is established by us-
ing the Java Pathfinder model checker. We also show how the
read-write lock primitive can be used to support high-level lan-
guage constructs such as object-level isolation in Habanero-Java
(HJ) [6]. Experimental results for a read-write microbenchmark
and a concurrent SortedLinkedList benchmark demonstrate that a
Java-based implementation of the proposed read-write lock algo-
rithm delivers higher scalability on multiple platforms than existing
read-write lock implementations, including ReentrantReadWrite-
Lock from the java.util.concurrent library.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

Keywords
Read-write locks, mutual exclusion, model checking.

1. INTRODUCTION
It is widely recognized that computer systems anticipated in the

2020 timeframe will be qualitatively different from current and past
computer systems. Specifically, they will be built using homoge-
neous and heterogeneous many-core processors with 100’s of cores
per chip, their performance will be driven by parallelism, and con-
strained by energy and data movement [15]. This trend towards
ubiquitous parallelism has forced the need for improved produc-
tivity and scalability in parallel programming models. One of the
major obstacles to improved productivity in parallel programming
is the complexity of coordination and synchronization of paral-
lel tasks. Coordination and synchronization constructs take many
forms in practice and can be classified two types,directed andundi-
rected. Directed synchronization, such as termination detection of
child threads and tasks using join, sync [4], and finish [5] oper-
ations, collective synchronization using barriers and phasers [16],
point-to-point synchronization using semaphores, and data-driven
tasks [17] semantically define a “happens-before” execution order
among portions of the parallel programs. Directed synchronization
is most often used to enable deterministic parallelism. Undirected
synchronization, such as operations on locks, actors, and transac-
tional memory systems, is used to establish mutual exclusion in
accesses to shared resources with strong or weakatomicity guar-
antees [9, 10]. Undirected synchronization is most often used to
enable data-race-free nondeterministic parallelism.

Recent efforts to improve software productivity for atomicity are
focused on declarative approaches that let the programmer demar-
cate blocks of codes to be atomically executed and defer the com-
plexity of maintaining atomicity to the compiler and the runtime
system. This approach aims to support higher programmability
while delivering performance comparable to well-tuned implemen-
tations based on fine-grained locks. On the other hand, primitive
fine-grained locks are still in demand for performance-critical soft-
ware such as commonly used runtime libraries and system software
rather than user programs. Further, fine-grained locks are easy to
support across a wide range of languages and platforms, while the
high-level declarative approaches are limited to specific languages
and/or require special hardware support.

A read-write lock enforces a special kind of mutual exclusion, in

which multiple reader threads are allowed to enter a critical section
concurrently (read-lock), but only a single writer thread is permit-
ted in the critical section (write-lock). Although support for reader
threads increases ideal parallelism, the read-lock functionality usu-
ally requires additional mechanisms, including expensive atomic
operations to handle multiple readers. It is not uncommon to find
cases where the overhead of supporting read-lock operations over-
shadows the benefit of concurrent read accesses. As a result, the use
of read-write locks can often degrade overall performance relative
to standard fine-grained locks, due to the overheads involved.

In this paper, we introduce a new read-write lock algorithm that
reduces the overhead of read-write locks compared to existing im-
plementations. In practice, the additional overhead of our read-lock
mechanism is equivalent to a pair of atomic increment and decre-
ment operations invoked when a reader thread enters and leaves
the critical section. As shown in our experimental results on a
64-thread Sun UltraSPARC T2 system and a 32-core IBM Power7
system, using efficient implementation of atomic increment oper-
ations, such as java.util.concurrent.AtomicInteger [13], achieves
significant performance improvement over existing read-write lock
approaches, including Java’s ReentrantReadWriteLock. Although
the implementation in this paper is based on atomic integers in Java,
the underlying read-write lock algorithm is easily implemented in
any language on any platform that includes an atomic compare-
and-swap operation.

The correctness of the algorithm, including deadlock freedom,
is established by using the Java Pathfinder model checker. We
also show how the read-write lock primitive can be used to sup-
port high-level language constructs such as object-level isolation
in Habanero-Java (HJ) [6]. Experimental results for a read-write
micro-benchmark and a concurrent SortedLinkedList benchmark
demonstrate that a Java-based implementation of the proposed read-
write lock delivers higher scalability on multiple platforms than
existing read-write lock implementations, including Java’s Reen-
trantReadWriteLock.

The rest of the paper is organized as follows. Section 2 uses a
sorted-list example as motivation for read-write locks by showing
how they can be used directly in the example, or indirectly to sup-
port HJ’s object-level isolation construct. Section 3 describes the
details of our new read-write lock algorithm, and Section 4 proves
the correctness of the proposed algorithm. Section 5 presents our
experimental results, and Section 6 and Section 7 summarize re-
lated work and our conclusions.

2. USE OF READ-WRITE LOCKS IN A
SORTED LIST ALGORITHM

2.1 Sorted Linked List Example with Explicit
Locks

In this section, we use the Sorted Linked List example from [7]
as a motivation for read-write locks, since it is representative of
linked lists used in many applications. The nodes in the list are
sorted in ascending order based on their integer key values (pa-
rameterv in Listing 1). There are four list operations:insert,
remove, lookup, andsum. It is assumed that no lock is needed
for lookup, fine-grained locking suffices forinsert andremove,
and a coarse-grained lock is needed forsum.

We implement this example by using a single read-write lock
(globalRWLock), and multiple standard fine-grained locks (one
per node). The assumption is that multiple calls toinsert and
remove can execute in parallel if they operate on disjoint nodes,
but none of those calls can execute in parallel with a call tosum;

also, it is always safe forlookup to execute in parallel with any
other operation. The inherent ordering in a linked list structure can
be used to avoid deadlock when acquiring fine-grained locks on the
nodes.

As shown in Listing 1,insert(v) atomically inserts a new node
with valuev into the list if no node in the list has valuev. The
role of globalRWLock is to manage the mutual exclusion rules
for insert, remove, andsum operations. Specifically,insert
andremove obtain read-locks onglobalRWLock, thereby ensur-
ing that they can all execute in parallel with each other. However,
sum acquires a write-lock onglobalRWLock to ensure that no in-
stance ofinsert andremove can execute in parallel with it.

Since the new node corresponding tov must be atomically in-
serted between nodesprev andcurr, insert operation obtains
the locks corresponding to these nodes (lines 9–10 and 14–15) af-
ter obtaining a read-lock onglobalRWLock . remove(v) (not
shown in Listing 1) has a similar structure toinsert, and atomi-
cally removes the node with valuev if such a node exists in the list.
Therefore,remove also obtains locks for the node with valuev and
its previous node.sum() computes the sum of all the values in the
list, after obtaining the write-lock forglobalRWLock.

2.2 Sorted Linked List Example with Object-
Based Isolation in Habanero-Java

Section 2.1 showed how to implement the functionality required
for insert/remove and sum, by using a global read-write lock
and local locks for nodes. This two-level locking approach can
also be used to enable higher levels of abstraction and safety, as de-
scribed in this section. We briefly introduce Habanero-Java’siso-
lated construct [6, 10] to support mutual exclusion with global and
object-based (local) isolation, and show how a read-write lock can
be employed to implement this extension.

• Object-based isolation: The isolated(〈obj-set〉) 〈stmt〉
construct supports mutual exclusion on〈stmt〉 with respect to
the objects specified in〈obj-set〉. Mutual exclusion between
two statements〈stmt1〉 and〈stmt2〉 is guaranteed if and only
if 〈obj-set1〉 and 〈obj-set2〉 have a non-empty intersection.
Further, whileisolated statements may be nested, an inner
isolated statement is not permitted to acquire an object that
wasn’t already acquired by an outerisolated statement.

• Global isolation: The isolated(*) 〈stmt〉 construct ex-
pands the scope to all objects and support global mutual ex-
clusion on〈stmt〉. This is the default semantics for HJ’siso-
lated construct if no object set is provided

Unlike Java’ssynchronized construct, this definition of object-based
isolation is guaranteed to be implemented with deadlock freedom.
Further, no reference in the object set can trigger a NullPointerEx-
ception as in Java’ssynchronized construct. Finally, Java does not
have asynchronized(*) statement analogous toisolated(*).

To rewrite theinsertmethod in Listing 1 with object-based iso-
lation, lines 13–15 can be replaced by “isolated(lk1,lk2) {”,
and lines 22–24 can be replaced by “}”. Likewise, thesum method
can be rewritten using anisolated(*) construct. These rewrites
result in much simpler code since the programmer does not have
to worry about deadlock avoidance or null checks on the objects (a
null entry is simply an empty contribution to the object set).

The actual implementation of object-based isolation relies on the
use of a global read-write lock, as illustrated in Section 2.1. Dead-
lock avoidance is obtained by using someComparable field so as
to order the objects. Effectively, a program written using object-
based isolation will be translated to code that is quite similar to the
explicit lock version in Listing 1 .

1 pub l i c boolean i n s e r t (i n t v) {
2 whi le (t rue) {
3 INode cu r r , p rev = n u l l ;
4 f o r (c u r r = f i r s t ; c u r r != n u l l ; c u r r = c u r r . ge tNex t ()) {
5 i f (c u r r . ge tVa lue () == v) re turn f a l s e ; / / v a l r e a d y e x i s t s
6 e l s e i f (c u r r . ge tVa lue () > v) break ;
7 p rev = c u r r ;
8 }
9 OrderedLock l k1 = ge tLoca lLock (p rev) ; / / Get l o c a l l o c k s c o r r e s p o n d i n g t o nodes

10 OrderedLock l k2 = ge tLoca lLock (c u r r) ;
11
12 boolean s e t = f a l s e ;
13 globalRWLock . r e a d _ l o c k () ; / / Ob ta in g l o b a l read l o c k
14 i f (l k1 != n u l l) l k1 . l ock () ; / / Ob ta in l o c a l l o c k s f o r nodes
15 i f (l k2 != n u l l) l k2 . l ock () ;
16 i f (v a l i d a t e (prev , c u r r)) {
17 INode neo =new INode (v) ;
18 l i n k (prev , neo , c u r r) ;
19 ass ignLoca lLock (neo) ; / / A s s i g n a l o c a l l o c k t o t h e new node
20 s e t = t rue ;
21 }
22 i f (l k2 != n u l l) l k2 . un lock () ; / / R e l e a s e l o c a l l o c k s f o r nodes
23 i f (l k1 != n u l l) l k1 . un lock () ;
24 globalRWLock . r ead_un lock () ; / / R e l e a s e g l o b a l read l o c k
25 i f (s e t) re turn t rue ;
26 } }
27
28 pub l i c i n t sum () {
29 i n t s = 0 ;
30 globalRWLock . w r i t e _ l o c k () ; / / Ob ta in g l o b a l w r i t e l o c k
31 f o r (INode c u r r = f i r s t ; c u r r != n u l l ; c u r r = c u r r . ge tNex t ())
32 s += c u r r . ge tVa lue () ;
33 globalRWLock . w r i t e _ u n l o c k () ; / / R e l e a s e g l o b a l w r i t e l o c k
34 re turn s ;
35 }

Listing 1: SortedLinkedList insert and sum methods

3. PROPOSED LOCK APPROACH AND
ALGORITHM

This section first introduces an OrderedLock algorithm (Sec-
tion 3.1) that is based on queue lock approaches such as Ticket
Lock [11], Anderson’s array-based queue lock [1], and Partitioned
Ticket Lock [3]. We then introduce the OrderedReadWriteLock al-
gorithm (Section 3.2), the primary focus of this paper. Although
support for reader threads in read-write lock increases ideal paral-
lelism, the read-lock functionality in current implementations typ-
ically requires additional mechanisms for managing multiple read-
ers, which often overshadow the benefit of concurrent read ac-
cesses. In our approach, we focus on reducing the overhead of read-
lock operations in OrderedReadWriteLock, while the overhead of
write-lock operation is comparable to that of general queue lock
operations such as OrderedLock. As described below, Ordered-
Lock and OrderedReadWriteLock do not use atomic operations
other than the atomic increment/decrement operation, which can
be implemented with a compare-and-swap primitive.

3.1 OrderedLock
Our OrderedLock algorithm consists of two steps: 1) determine

the synchronization order among critical sections on a first-come-
first-served basis (as in Ticket Locks [11]) and 2) perform a point-
to-point synchronization between two sections with continuous or-
ders using arrays as in Anderson’s array-based queue lock [1]. Fig-
ure 1 shows a sample lock-unlock sequence for four threads oper-
ating on a single OrderedLock. The first step needs an atomic in-
crement operation to determine the synchronization order of each

section (1st to 5th in Figure 1), and the second step preserves the or-
der by array-based point-to-point synchronization. This description
of the OrderedLock is roughly equivalent to the Partitioned Ticket
Lock [3], although we discuss some further performance tuning in
Section 5.1.1. Listing 2 summarizes the OrderedLock interface.
Note that thelock operation returns theorder of the requester in
the queue, and theunlock operation usesorder. Our expectation
is that the interface in Listing 2 will be used by library and lan-
guage implementers, rather than application programmers who are
not expected to see the internal details of theorder values.

T1 T2 T3 T4

1st

2nd

3rd

4th

5th

: synchronization

Figure 1: OrderedLock by four threads

1 c l a s s OrderedLock {
2 i n t l o ck () ; / / A c q u i r e t h e l o c k and r e t u r n o r d e r i n queue
3 vo id un lock (i n t o r d e r) ; / / Use o r d e r when p e r f o r m i n g an u n l o c k o p e r a t i o n
4 }

Listing 2: Interface of queue lock

3.2 OrderedReadWriteLock
The write lock/unlock operation in OrderedReadWriteLock is

equivalent to general lock/unlock, and the read lock/unlock oper-
ation consists of the following steps.

• Read-lock

– First reader: Invoke general lockOrderedLock.lock
to obtain lock

– Other readers: Wait for the first reader to obtain lock

• Read-unlock

– Last reader: Invoke general unlockOrderedLock.unlock
to release lock

– Other readers: No-op

There are several policy decisions on the priority for obtaining
lock. In our approach, both a read-lock operation (reader) and a
write-lock operation (writer) have the same priority when the write-
lock is released (fair reader-writer policy), and once a read-lock is
obtained, the subsequent readers can share the read lock regardless
of the presence of waiting writers. Figure 2 shows an example for
OrderedReadWriteLock by four threads T1, T2, T3, and T4. The
writers, for example, W:1st and W:4th by T1, require general mu-
tual exclusion and their own unique synchronization orders, while a
synchronization order is assigned to several different readers, such
as R:2nd (by T1 and T2), and R:3rd (by T2, T3, and T4). Here
R:2nd by T1 is the last reader to releases the lock, and then R:3rd
by T4 becomes the next first reader. As shown below, the key func-
tion of OrderedReadWriteLock is the management of the unlocking
process among concurrent readers, whose efficiency directly affects
the overall synchronization performance.

: sync : shared read-lock

T1 T2 T3 T4

W: 1st

R: 2nd
R: 2nd

R: 3rdR: 3rdR: 3rd

W: 4th

lag

Figure 2: OrderedLock and OrderedReadWriteLock by four
threads

Listing 3 describes OrderedReadWriteLock in written Java. Meth-
ods write_lock and write_unlock are equivalent to general
lock andunlock of OrderedLock (lines 9 and 10). At the begin-
ning of methodsread_lock andread_unlock, atomic increment

and decrement operations are respectively performed so as to de-
tect the first reader and last reader (lines 13 and 28). For method
read_lock, the first reader invokesOrderedLock.lock to obtain
a synchronization orderreadOrder, which is shared by all read-
ers (line 14) and setreadLocked = true to notify that the order
has been obtained (line 15), while non-first readers wait for the first
reader to obtain the order (line 22). For methodread_unlock,
the last reader setsreadLocked = false to notify that the cur-
rent lock is released (line 32) and invokesOrderedLock.unlock
to release the lock.

It is possible thatread_lock is invoked by one thread while
another is in the midst of the unlocking process inread_unlock.
We refer to readers that invokeread_lock during an unlocking
transition asrapid readers. In that case a first rapid reader will be
blocked byOrderedLock.lock at line 14 as normal. In contrast,
non-first rapid readers will reach line 17 and have two scenarios: 1)
if flag transit is true (set at line 29), the rapid reader is blocked
at line 19 until the last reader completes the unlocking process, or
2) if flag transit is false, the rapid reader passes the blocking
operations (lines 19 and 22) and enters the critical section. The
code at line 31 is to manage rapid readers encountering the sec-
ond scenario so that the last reader waits for the rapid readers to
leave the critical section. Section 4 discusses the correctness of
OrderedReadWriteLock. Note that this transition process is a rare
occurrence, at least in our benchmarks, and has almost no affecton
performance as shown in Section 5.

The OrderedReadWriteLock provides no fairness or progress guar-
antees. Any number of readers can enter, exit, and re-enter their
critical sections under the same lock as long asnumReaders re-
mains positive, thus enabling an infinite stream of repeated readers
to starve a writer.

4. VERIFICATION OF LOCK ALGORITHM
WITH MODEL CHECKING

We prove the correctness of our OrderedReadWriteLock imple-
mentation in three stages. We start by proving correctness for a
four-thread model where each thread performs a single locking op-
eration, assuming sequential consistency. We then prove a lack of
data races for the same model, which guarantees sequential consis-
tency. Finally, we show the results obtained from our four-thread
model with single operations are sufficient to generalize to any
number of threads and locking operations. The underlying Or-
deredLock is assumed correct throughout the proof due to its sim-
plicity and basis in previous work (see Section 3.1).

For the first stage of our proof we use the Java Pathfinder (JPF)
model checker, an automatic verification tool for concurrent Java
programs [18]. JPF takes as input the Java program to verify, an
environment to provide program input, and correctness conditions
in the form of program assertions in the environment or model. JPF
then uses state space exploration to enumerate all possible sequen-
tially consistent executions allowed by the program and environ-
ment. The result is an exhaustive proof showing the absence of any
execution that violates an assertion. JPF employs a partial order re-
duction to reduce the number of executions it must consider in the

1 c l a s s OrderedReadWri teLock {
2 OrderedLock o lock =new OrderedLock () ; / / Genera l l o c k
3 i n t r eadOrde r = 0 ; / / S y n c h r o n i z a t i o n o r d e r s h a r e d by r e a d e r s
4 v o l a t i l e boolean readLocked = f a l s e ; / / True i f f i r s t r e a d e r o b t a i n e d l o c k
5 A t o m i c I n t e g e r numReaders ; / / # r e a d e r s a t t h i s moment (i n i t by 0)
6 v o l a t i l e boolean t r a n s i t = f a l s e ; / / True i f l a s t r e a d e r i s r e l e a s i n g l o c k
7 A t o m i c I n t e g e r numBlocked InTrans i t ; / / # b l o c k e d r e a d e r s i n t r a n s i t i o n (i n i t by 0)
8
9 i n t w r i t e _ l o c k () { re turn o lock . l ock () ; }

10 vo id w r i t e _ u n l o c k (i n t myOrder) { o lock . un lock (myOrder) ; }
11
12 i n t r e a d _ l o c k () {
13 i f (numReaders . addAndGet (1) == 1) { / / F i r s t r e a d e r
14 readOrde r = o lock . l ock () ; / / Get s ync o r d e r t o be s h a r e d by r e a d e r s
15 readLocked = t rue ; / / N o t i f y t h a t l o c k has been o b t a i n e d
16 } e l s e {
17 i f (t r a n s i t) { / / T r a n s i t i o n o f u n l o c k i n g p r o c e s s (m o s t l y f a l s e)
18 numBlocked InTrans i t . addAndGet (1) ;
19 whi le (t r a n s i t) ; / / Wai t f o r l a s t r e a d e r t o r e l e a s e l o c k
20 numBlocked InTrans i t . addAndGet (−1) ;
21 }
22 whi le (! readLocked) ; / / Wai t f o r f i r s t r e a d e r t o o b t a i n l o c k
23 }
24 re turn r eadOrde r ;
25 }
26
27 vo id r ead_un lock (i n t myOrder) {
28 i f (numReaders . addAndGet (−1) == 0) { / / L a s t r e a d e r
29 t r a n s i t = t rue ; / / S t a r t t r a n s i t i o n o f u n l o c k i n g p r o c e s s
30 i f (numReaders . g e t () > 1) / / Manage r a p i d r e a d e r s (m o s t l y f a l s e)
31 whi le (numBlocked InTrans i t . g e t () +1 < numReaders . g e t ()) ;
32 readLocked = f a l s e ; / / N o t i f y t h a t l o c k i s r e l e a s e d
33 t r a n s i t = f a l s e ; / / End t r a n s i t i o n o f u n l o c k i n g p r o c e s s
34 o lock . un lock (myOrder) ; / / A c t u a l l y r e l e a s e l o c k
35 } } }

Listing 3: OrderedReadWriteLock

proof construction and mitigate state space explosion in the verifi-
cation [12]. The key aspects of the environment for checking our
OrderedReadWriteLock are shown in Listing 4.

Each of the four threads in our model is an instance of EnvThread
shown in Listing 4. The library call in theswitch on line 9 tells
JPF to explore the execution resulting for each value in the inclusive
range 0 to 1, allowing our model to cover all possible combinations
of readers and writers. We check for correct mutual exclusion using
two assertions. Line 13 ensures that the shared-counter value does
not change while under a read lock and that thereadLocked is al-
ways set while a reader is in the critical section. SincereadLocked
is set immediately after a reader obtains the lock and unset imme-
diately before the last reader releases the lock, this assertion guar-
antees that the lock is held by a reader, not a writer. Line 22 en-
sures that the final count reflects the actual number of writes to the
shared counter. JPF checks these assertions for all possible thread
orderings. Additionally, termination on all execution paths proves
freedom from deadlock.

To prove data-race freedom we use Java Racefinder (JRF), a JPF
module for detecting data races [8]. It is important to distinguish
between a race condition and a data race. A race condition is any-
time there are two concurrent accesses to a shared variable. A data
race, however, is when those accesses conflict, such as a read and a
write, and are nothappens-before ordered [14]. Happens-before or-
derings are induced by synchronization primitives, such as atomic
read-modify-write operations, access to variables declared volatile,
explicit locks, etc. JRF tracks these synchronization primitives to
construct the happens-before relation on-the-fly during state space

exploration to prove a program is data-race free. For the data-race
verification, we use the same model as with JPF, thus proving that
there are no data races in the scenario or in the underlying lock.
The Java memory model guarantees sequential consistency in the
absence of data races [14]; therefore, the assumption in our JPF
model of sequentially consistent executions is correct.

LEMMA 4.1. The OrderedReadWriteLock is free of deadlock,
implements mutual exclusion, and is free of data-race for up to four
threads with each thread obtaining a lock.

PROOF. Exhaustive proof via model checking with JPF and JRF
using the environment described in Listing 4. The running time for
each verification run is under 20 minutes on a standard desktop ma-
chine. Full details with all source and test harness files to recreate
the proof are available online.1 For completeness, we also mutated
the lock and verified via JPF that the lock fails as expected.

Lemma 4.1 proves correctness for our four-thread environment.
We now prove that the model described in Listing 4 using four
threads is sufficient to conclude correct behavior of the lock for
any number of threads. We prove this by showing that any thread
added in addition to the four used in our model will not result in
exploring any interesting new states.

THEOREM 4.2. The OrderedReadWriteLock is free of deadlock,
implements mutual exclusion, and is free of data-race for any num-
ber of threads each obtaining any sequence of locks.
1http://www.cs.rice.edu/~nv4/papers/spaa2012/
ORWLockTest.tgz

1 v o l a t i l e i n t s h a r e d C o u n t e r = 0 ;
2 A t o m i c I n t e g e r envCounter =new A t o m i c I n t e g e r () ;
3 OrderedReadWri teLock i n s t a n c e =new OrderedReadWri teLock () ;
4 p r i v a t e j a v a . u t i l . Random g e n e r a t o r =new j a v a . u t i l . Random () ;
5
6 c l a s s EnvThread ex tends Thread {
7 pub l i c vo id run () {
8 i n t next , mine ;
9 sw i tch (g e n e r a t o r . n e x t I n t (2)) {

10 case 0 : / / Reader t h r e a d
11 nex t = i n s t a n c e . r e a d _ l o c k () ;
12 mine = s h a r e d C o u n t e r ;
13 a s s e r t (mine == s h a r e d C o u n t e r && i n s t a n c e . readLocked) ;
14 i n s t a n c e . r ead_un lock (nex t) ;break ;
15 case 1 : / / W r i t e r t h r e a d
16 envCounter . getAndAdd (1) ;
17 nex t = i n s t a n c e . w r i t e _ l o c k () ;
18 s h a r e d C o u n t e r += 1 ;
19 i n s t a n c e . w r i t e _ u n l o c k (nex t) ;break ;
20 } } }
21
22 a s s e r t (s h a r e d C o u n t e r == envCounter . g e t ()) ;

Listing 4: Generic environment for depth-bounded model check ofthe OrderedReadWriteLock using JPF.

PROOF. The underlying lock,olock in Listing 3, is assumed
correct and orders requests to its lock interface accordingly. As
such, it is sufficient to prove the case of a single writer with more
than three readers because multiple writers are arbitrated by the
olock, and anything less than four threads is covered by Lemma 4.1.
All line numbers refer to Listing 3 in the proof.

Consider the case where the readers do not transfer ownership of
olock. In such a scenario, either the writer or a single reader holds
olock (line 9 and line 14). By Lemma 4.1, a single writer with
three readers is correct as either the writer or readers will block
until the other finishes. If the writer finishes first, then only the last
reader enters line 28, does not enter the if-statement on line 30 as
it is the last reader, and eventually releasesolock on line 34. This
case is no different than the all-readers case in Lemma 4.1.

Consider now the case where the readers transfer ownership of
olock. As before, if the writer holdsolock, then the readers block
and the problem reduces to Lemma 4.1 with multiple readers. Let
us then assume that the writer is queued up to obtainolock, which
is currently held by a reader. Let us further assume that one reader
takes the true branch on line 28 of Listing 3. We will refer to this
thread asreaderA. Next, another reader takes the true branch on
line 13 ofread_lock, attempting to reacquire the lock. We will
refer to this thread asreaderB . A final thread, which we will refer
to asreaderC , is then forced to take the false branch on line 28
sincenumReaders is greater than 1. In this scenario, additional
writer or reader threads do not affect the lock behavior, and the
problem reduces to that of Lemma 4.1 with one writer and three
readers.

To be specific, havingnumReaders > 1 means thatreaderC is
now free to take any path through the remainder of theread_lock
method. Since all remaining conditions in the method depend en-
tirely on the current state ofreaderA in read_unlock and the
state ofolock (i.e., whether a writer or reader obtainsolock next),
we can conclude by Lemma 4.1 that all remaining control paths
throughread_lock are covered byreaderC , and no additional
readers or writers are required to elicit new behavior. All addi-
tional threads added to the environment will continue to access the
lock, read or increment the counters, and pass the assertions in our
environment as in the four-thread scenario.

We have shown that we can obtain full coverage of the lock’s
behavior with the four threads in our counter scenario. Any threads
interacting with the lock in excess of four will only duplicate be-
havior already observed in the four-thread model. Therefore, The-
orem 4.2 is true via Lemma 4.1. These properties hold barring
integer overflow in the internal lock state and improper client use
of the lock.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results for the proposed

OrderedReadWriteLock. All results in this paper were obtained
on two platforms. The first platform is a 64-thread (8 cores× 8
threads/core) 1.2 GHz Sun UltraSPARCT2 system with 32 GB
main memory running Solaris 10. We conducted all experiments
on this system by using the Java 2 Runtime Environment (build
1.5.0_12-b04) with Java HotSpot Server VM (build 1.5.0_12-b04,
mixed mode). The second platform is a 32-core 3.55 GHz IBM
Power7 system with 256 GB main memory running Red Hat En-
terprise Linux release 6.1. We used the IBM J9 VM (build 2.4, JRE
1.6.0) for all experiments on this platform. On both platforms, the
main Java program was extended with a 10-iteration loop within
the same process, and the best result was reported so as to reduce
the impact of JIT compilation time and other JVM services in the
performance comparisons.

5.1 Summary of implementation
In this section, we briefly summarize our preliminary Java-based

implementations of OrderedLock and OrderedReadWriteLock.

5.1.1 OrderedLock
As described in Section 3.1, our general lock implementation is

based on Ticket Lock [11] and has the same array-based extension
as Partitioned Ticket Lock [3] so as to reduce memory and network
contention. Ticket Lock consists of two counters,request counter
to contain the number of requests to acquire the lock andrelease
counter to contain the number of times the lock has been released.
A thread requesting a lock is assigned a ticket (the value of the re-
quest counter) and waits until the release counter equals its ticket.
In the implementation, the request counter must be an atomic vari-

0

20

40

60

80

100

2 4 8 16 32 64

100.0
T

im
e
 p

e
r

lo
c
k
 [
m

ic
ro

-s
e
c
]

threads

JUC ReentrantLock JUC ReentrantRWLock Read-prefer simple

Read-prefer queue Ordered lock Ordered RW lock

100.0453.0

Figure 3: ReadWrite SyncBench (read rate = 90% on T2)

0

20

40

60

80

100

2 4 8 16 32 64

100.0

T
im

e
 p

e
r

lo
c
k
 [
m

ic
ro

-s
e
c
]

threads

JUC ReentrantLock JUC ReentrantRWLock Read-prefer simple

Read-prefer queue Ordered lock Ordered RW lock

100.0337.0

Figure 4: ReadWrite SyncBench (read rate = 99% on T2)

able so that concurrent threads can get unique tickets, while the
release counter can be a non-atomic variable since it is always up-
dated by a thread that is releasing the lock. To avoid the contention
on the single global release counter, Partitioned Ticket Lock and
OrderedLock employ similar extensions to Anderson’s array-based
queue lock [1], which replaces the release counter variable by an
array with cache line padding so that different threads can access
different elements of the array. Appendix A includes a pseudo-code
summary of our OrderedLock implementation in Java.

In an attempt to improve the scalability of atomic increments for
the request counter, OrderedLock employs the idea of adding a de-
lay to the atomic updating loop if the update fails [1]. By adding
a delay, we reduce the contention and bus traffic for the update
on the atomic variable. The delay function has various choices
in the implementation, such as random, proportional, exponential,
and constant. In this paper, we used a random function of the
form,delay * (1.0 + rand.nextDouble()), wheredelay is
a tunable parameter for each platform andrand is an instance of
java.util.Random that returns a double value between 0 and 1.

5.1.2 OrderedReadWriteLock
The Java implementation for OrderedReadWriteLock was based

on the design discussed earlier in Listing 3. We also employ the
delay optimization for atomic increment operations discussed in
Section 5.1.1.

0

2

4

6

8

10

12

14

2 4 8 16 30

14.014.0

T
im

e
 p

e
r

lo
c
k
 [
m

ic
ro

-s
e
c
]

threads

JUC ReentrantLock JUC ReentrantRWLock Read-prefer simple

Read-prefer queue Ordered lock Ordered RW lock

14.014.0 138.046.3

Figure 5: ReadWrite SyncBench (read rate = 90% on Power7)

0

2

4

6

8

10

12

14

2 4 8 16 30

14.014.0

T
im

e
 p

e
r

lo
c
k
 [
m

ic
ro

-s
e
c
]

threads

JUC ReentrantLock JUC ReentrantRWLock Read-prefer simple

Read-prefer queue Ordered lock Ordered RW lock

14.014.0 120.236.3

Figure 6: ReadWrite SyncBench (read rate = 99% on Power7)

5.2 Microbenchmark Performance
This section presents synchronization performance using a mi-

crobenchmark. We use the JGFSyncBench microbenchmark with
the following extension to evaluate read-write lock functionality.
Given an arbitrary number of parallel threads, each thread ran-
domly invokesreadWork with the probability ofreading_rate or
writeWork, whose probability is (1 -reading_rate). readWork
andwriteWork are guarded by read-lock and write-lock, respec-
tively. Figures 3–6 show the synchronization performance (time
per operation) onT2 andPower7 when reading_rate is 90% and
99%. The number of parallel threads ranges from 2 to 64 onT2
and 2 to 30 onPower7. 2 There are six experimental variants:

• JUC ReentrantLock is the general lock implementation of
java.util.concurrent (JUC).

• JUC ReentrantRWLock stands for ReentrantReadWriteLock,
which is the read-write lock of JUC.

• Read-prefer simpleis an implementation of the simple reader-
preference lock approach [11].3

2On Power7, two threads are reserved due to the possible system
workload.
3We selected the read-preference policy because of the benchmarks
that contain many read-locks and few write-locks.

Table 1: Rate of transitions over total critical sections executed

read rate = 90% read rate = 99%
T2 with 8 threads 7.5×10

−5 7.1×10
−5

T2 with 64 threads 9.7×10
−5 2.3×10

−5

Power7 with 8 threads 70.4×10
−5 22.6×10

−5

Power7 with 32 threads 4.4×10
−5 5.9×10

−5

• Read-prefer queueis an implementation of the scalable reader-
preference queue-based lock [11].

• OrderedLock / OrderedRWLock is the proposed general /
read-write lock approach.

Figure 3 shows the synchronization performance when theread-
ing_rate = 90% onT2, which demonstrates that OrderedReadWrite-
Lock gives much better efficiency than other lock approaches, by
the factor of 4.67× for JUC ReentrantLock, 3.94× for JUC Reen-
trantReadWriteLock, 29.61× for simple reader-preference lock, 3.46×
for scalable reader-preference queue-based lock, and 2.54× for Or-
deredLock. Figure 4 shows the case where thereading_rate is in-
creased to 99% onT2. More concurrent reader threads improve the
performance of other read-write lock approaches, although Ordere-
dReadWriteLock wins in all experimental variants.

Figures 5 and 6 show the synchronization performance onPower7
when thereading_rate = 90% and 99%, respectively. Due to faster
clock frequency onPower7, the overlapping work in the readers’
critical sections is relatively small compared toT2. Therefore, gen-
eral lock implementations of ReentrantLock and OrderedLock at-
tain better performance than read-write locks when thereading_rate
= 90%. In the case where thereading_rate = 99%, however, Or-
deredReadWriteLock performs better by a factor of 1.25× than
JUC ReentrantLock, 2.29× than JUC ReentrantReadWriteLock,
1.24× than OrderedLock, and 1.19× than scalable reader-preference
queue-based lock.

Regarding the overhead due to the unlocking transition process
discussed in Section 3.2, we measured the frequency of this pro-
cess inT2 andPower7. Specifically, we measured the ratio of the
total number of last readers delayed by rapid readers (the condi-
tion at line 30 in Listing 3 becomestrue) to the total number of
critical sections executed under the lock. As shown in Table 1, the
extremely low transition frequency indicates a negligible overhead.

5.3 Application Performance with Read-write
Lock

We used SortedLinkedList to demonstrate the two-level lock ap-
proach shown in Section 2. We supported theinsert, remove and
sum operations using the following implementation variants.

• Reentrant single uses a JUC ReentrantLock as the single
global lock to guarantee mutual exclusion ofinsert, remove,
andsum.

• Reentrant 2-lv employs the two-level lock approach using
JUC ReentrantReadWriteLock and JUC ReentrantLock.

• Ordered singleuses a OrderedLock as the single global lock.

• Ordered 2-lv employs the two-level lock approach, using
OrderedReadWriteLock and JUC ReentrantLock.

• All ordered 2-lv employs the two-level lock approach, using
OrderedReadWriteLock and OrderedLock.

0

10

20

30

40

50

22.8
26.0

41.7

18.318.3

25.1

11.6

18.4

25.6

9.9
12.3

20.8

7.9
10.1

17.8

S
p

e
e
d

u
p

 v
s
.
s
e
ri
a
l

Insert/Remove Rate

reentrant single reentrant 2-lv ordered single

ordered 2-lv all ordered 2-lv

5 % 25 % 45 %

Figure 7: Speedup for SortedLinkedList 64-thread T2

0

5

10

15

5 % 25 % 45 %

2.9
4.2

12.5

1.3
2.4

6.8

2.0
2.9

9.0

1.01.2
1.8

1.01.2
2.3

S
p

e
e
d

u
p

 v
s
.
s
e
ri
a
l

Insert/Remove Rate

reentrant single reentrant 2-lv ordered single

ordered 2-lv all ordered 2-lv

Figure 8: Speedup for SortedLinkedList 32-core Power7

Given an arbitrary number of parallel threads, each thread ran-
domly invokes one of four list operations,insert(v), remove(v),
lookup(v), andsum(), where the value ofv is a random number.
The range ofv, which determines the maximum list length, is 0 to
2048. There are 256 local locks to handle all nodes, and therefore
up to 8 nodes are mapped into a local lock. We used a simple lock-
assignment scheme for linked-list nodes based on a uniform sub-
range partitioning of the node values. The probability ofinsert
andremove is given byinsert_remove_rate, the probability ofsum
is fixed as 1%, andlookup has the remaining possibility of (1 -
insert_remove_rate × 2 - 0.01).

Figures 7 and 8 show the speedup ratio relative to the sequential
execution onT2 andPower7, respectively. The number of parallel
threads is 64 onT2 and 30 onPower7. Comparingreentrant 2-
lv andordered 2-lv, OrderedReadWriteLock performs better than
ReentrantReadWriteLock for all cases by a factor of up to 3.78×,
even though both implementations employ ReentrantLock as the
local lock. Moreover,all ordered 2-lv shows that the combination
of OrderedReadWriteLock and OrderedLock always performs the
best, up to 41.7× speedup onT2 and 12.5× speedup onPower7.

6. RELATED WORK
There is an extensive literature on general and read-write locks

approaches. In this section, we focus on a few past contributions
that are most closely related to this paper.

The FIFO queue-based lock is a simple and efficient approach
to support mutual exclusion. Ticket Lock [11] is a queue-based
lock that consists of two counters, one containing the number of
requests to acquire the lock and the other the number of times the
lock has been released. A thread requesting lock is assigned a ticket
(the value of the request counter) and waits until the release counter
equals its ticket.

Memory and network contentions can occur when all threads
continuously check the same release counter. To reduce this con-
tention and improve scalability, several array-based queue-lock ap-
proaches that allow threads to check different locations (different
cache lines) have been proposed [1, 3]. List-based queue locks,
such as MCS [11] and CLH [2] locks, also support scalable syn-
chronizations in a similar manner and require a smaller space size.

Extending queue-based locks, several read-write lock algorithms
with reader-preference, writer-preference, and fair reader-writer poli-
cies have been proposed [11]. Although these read-write locks em-
ploy efficient local-only spinning implementations, the processes
to support read-write lock functionality require lots of atomic oper-
ations such as compare_and_store, fetch_and_add, fetch_and_and,
fetch_and_or, and fetch_and_store because their algorithms strictly
preserve the orders in their FIFO queues.

7. CONCLUSION
In this paper, we introduced a new read-write lock algorithm that

supports concurrent reader threads and has lower overhead than ex-
isting implementations. The algorithm lowers overhead by tracking
reader counts and only allowing the first and last reader threads to
interact with the underlying lock that implements mutual exclusion
between the readers and writers. The lower overhead is not free,
however, as the new algorithm is considerably more complex than
other existing algorithms. We demonstrated the correctness of this
new algorithm, including deadlock freedom, via the Java Pathfinder
model checker. To demonstrate the utility of this new lock, we de-
scribed how the read-write lock primitive can support high-level
language constructs, such as object-level isolation in Habanero-
Java (HJ) [6]. We further implemented the proposed read-write
lock algorithm as a Java library and demonstrated the efficiency of
the approach on two platforms. The experimental results for a read-
write microbenchmark show that our algorithm performs 3.94×
and 2.29× better than java.util.concurrent.ReentrantReadWriteLock
on a 64-thread Sun UltraSPARC T2 system and 32-core IBM POWER7
system, respectively. Performance measurements for a concurrent
SortedLinkedList benchmark also demonstrate higher scalability
for our algorithm on multiple platforms over the benchmark set.
Opportunities for future research include scalability evaluations on
a wider range of benchmark programs, support for additional high-
level language constructs using the proposed read-write lock (e.g.,
read/write permission regions), and experimenting with its imple-
mentation in non-Java language environments.

8. ACKNOWLEDGMENTS
We are grateful to John Mellor-Crummey and William Scherer

at Rice University, and Doug Lea at SUNY Oswego, for their feed-
back on this work and its relationship to past work on read-write
locks. The SortedList example used to obtain the results reported
in this paper was derived from an earlier HJ version implemented
by Rui Zhang and Jisheng Zhao. We would like to thank Jeff Bas-
com at Brigham Young University for developing the initial JPF
model and generating early verification results, and Jill Delsigne
at Rice University for her assistance with proof-reading the final
version of this paper.

This work was supported in part by the U.S. National Science
Foundation through awards 0926127 and 0964520. We would like
to thank Doug Lea for providing access to the UltraSPARC T2
system used to obtain experimental results for this paper. The
POWER7 system used to obtain experimental results for this pa-
per was supported in part by NIH award NCRR S10RR02950 and
an IBM Shared University Research (SUR) award in partnership
with CISCO, Qlogic, and Adaptive Computing.

9. REFERENCES

[1] T. E. Anderson. The performance of spin lock alternatives
for shared-memory multiprocessors. InProc. IEEE Int’l.
Parallel and Distributed Processing Symp. (IPDPS), January
1990.

[2] T. Craig. Building FIFO and priority-queueing spin locks
from atomic swap. InTechnical Report TR 93-02-02.
University of Washington, Dept. of Computer Science, 1993.

[3] D. Dice. Brief announcement: A partitioned ticket lock. In
SPAA ’11: Proceedings of the 23rd annual ACM symposium
on parallelism in algorithms and architectures, New York,
NY, USA, 2011. ACM.

[4] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In
PLDI ’98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and
implementation, pages 212–223, New York, NY, USA, 1998.
ACM.

[5] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and
help-first scheduling policies for async-finish task
parallelism. InIPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed
Processing, pages 1–12, Washington, DC, USA, May 2009.
IEEE Computer Society.

[6] Habanero Java (HJ) Project. http://habanero.rice.edu/hj,
2009.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data
structures. InPODC ’03: Proceedings of the twenty-second
annual symposium on Principles of distributed computing,
pages 92–101, New York, NY, USA, 2003. ACM Press.

[8] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders. Precise data
race detection in a relaxed memory model using
heuristic-based model checking. InProceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, pages 495–499, Washington, DC,
USA, 2009. IEEE Computer Society.

[9] J. R. Larus and R. Rajwar.Transactional Memory. Morgan &
Claypool, 2006.

[10] R. Lublinerman, J. Zhao, Z. Budimlić, S. Chaudhuri, and
V. Sarkar. Delegated Isolation. InOOPSLA ’11: Proceedings
of the 26th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, 2011.

[11] J. Mellor-Crummey and M. Scott. Algorithms for Scalable
Synchronization on Shared Memory Multiprocessors.ACM
Transactions on Computer Systems, 9(1):21–65, February
1991.

[12] NASA Ames Research Center. JPF developer guide:
On-the-fly partial order reduction.
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial
_order_reduction, 2009.

[13] T. Peierls, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes.Java

Concurrency in Practice. Addison-Wesley Professional,
2006.

[14] W. Pugh. JSR-133: Java memory model and thread
specification.
http://www.jcp.org/en/jsr/detail?id=133, August 2004.

[15] V. Sarkar, W. Harrod, and A. E. Snavely. Software
Challenges in Extreme Scale Systems. January 2010. Special
Issue on Advanced Computing: The Roadmap to Exascale.

[16] J. Shirako et al. Phasers: a unified deadlock-free construct
for collective and point-to-point synchronization. InICS ’08:
Proceedings of the 22nd annual international conference on
Supercomputing, pages 277–288, New York, NY, USA,
2008. ACM.

[17] S. Taşırlar and V. Sarkar. Data-Driven Tasks and their
Implementation. InICPP’11: Proceedings of the
International Conference on Parallel Processing, Sep 2011.

[18] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs.Automated Software Engg.,
10:203–232, April 2003.

APPENDIX

A. ORDEREDLOCK IMPLEMENTATION

1 c l a s s OrderedLock {
2 A t o m i c I n t e g e r o r d e r =new A t o m i c I n t e g e r (0) ;
3 / / Array s i z e (e q u a l t o HW t h r e a d s)
4 i n t a r r a y S i z e = getNumHardwareThreads () ;
5 V o l a t i l e I n t [] syncVars = new V o l a t i l e I n t [

a r r a y S i z e] ;
6
7 i n t l o ck () {
8 / / A tomic i n c r e m e n t
9 i n t myOrder = o r d e r . getAndAdd (1) ;

10 / / Compute c o r r e s p o n d i n g i n d e x
11 i n t i dx = Math . abs (myOrder % a r r a y S i z e) ;
12 V o l a t i l e I n t sv = syncVars [i dx] ;
13 / / Spin−l o c k on myOrder
14 whi le (sv . v a l != myOrder) ;
15
16 re turn myOrder ;
17 }
18
19 vo id un lock (i n t myOrder) {
20 i n t nex t = myOrder + 1 ;
21 / / Compute c o r r e s p o n d i n g i n d e x
22 i n t i dx = Math . abs (nex t % a r r a y S i z e) ;
23 V o l a t i l e I n t sv = syncVars [i dx] ;
24 / / R e l e a s e sp in−l o c k on (myOrder +1)
25 sv . v a l = nex t ;
26 }
27
28 c l a s s V o l a t i l e I n t {
29 v o l a t i l e i n t v a l ;
30 / / Avoid f a l s e s h a r i n g
31 i n t pad1 , pad2 , . . . , padN ;
32 }
33 }

Listing 5: OrderedLock

Listing 5 provides pseudo code for our Java-based implemen-
tation of OrderedLock. For methodlock, an atomic increment
operation determines the synchronization ordermyOrder (line 9),
followed by a point-to-point waiting process onmyOrder (lines
11–14). The waiting process first computes the index valueidx to
access arraysyncVars based onmyOrder (line 11) and waits until
theval field equalsmyOrder (line 14). The value ofmyOrder is
returned since it is used for the unlocking process (line 16). Method
unlock works as a point-to-point signal operation onmyOrder+1
so as to release the spin-lock of the following lock operation (lines
20–25). The signaling process also computesidx for next =
myOrder + 1 in the same manner (lines 20–22), and setsnext to
its val field (line 25). As shown at line 5,syncVars is an array
of VolatileInt class that contains padding to avoid false sharing
(line 31). By selecting a suitable array size forsyncVars (equal
to or larger than the number of hardware threads) we ensure that
the hardware threads will concurrently access different elements of
syncVars without unnecessary cache invalidation (line 4).

